Home   |   Research   |   Publications   |   Talks   |   HDR & PhD

Publications



2022



110. Assessing the performances of CASPT2 and NEVPT2 for vertical excitation energies,
R. Sarka, P. F. Loos, M. Boggio-Pasqua, and D. Jacquemin.
J. Chem. Theory Comput. (submitted).

2021



109. A mountaineering strategy to excited states: highly-accurate energies and benchmarks for bicyclic systems,
P. F. Loos and D. Jacquemin.
J. Phys. Chem. A 125, 10174 (2021).

108. Accurate full configuration interaction correlation energy estimates for five- and six-membered rings,
Y. Damour, M. Véril, F. Kossoski, M. Caffarel, D. Jacquemin, A. Scemama, and P. F. Loos.
J. Chem. Phys. 155, 134104 (2021).

107. Scrutinizing GW-based methods using the Hubbard dimer,
S. Di Sabatino, P. F. Loos, and P. Romaniello.
Front. Chem. (Open Access) 9, 751054 (2021).

106. Variational coupled cluster for ground- and excited states,
A. Marie, F. Kossoski, and P. F. Loos.
J. Chem. Phys. (Open Access) 155, 104105 (2021).

105. Variations of the Hartree-Fock fractional-spin error for one electron,
H. G. A. Burton, C. Marut, T. J. Daas, P. Gori-Giorgi, and P. F. Loos.
J. Chem. Phys. 155, 054107 (2021).

104. How accurate are EOM-CC4 vertical excitation energies?,
P. F. Loos, D. A. Matthews, F. Lipparini, and D. Jacquemin.
J. Chem. Phys. 154, 221103 (2021).

103. Excited states from state specific orbital optimized pair coupled cluster,
F. Kossoski, A. Marie, A. Scemama, M. Caffarel, and P. F. Loos.
J. Chem. Theory Comput. (Open Access) 17, 4756 (2021).

102. Reference energies for intramolecular charge-transfer excitations,
P. F. Loos, M. Comin, X. Blase, and D. Jacquemin.
J. Chem. Theory Comput. 17, 3666 (2021).

101. Spin-adapted selected configuration interaction in a determinant basis,
V. G. Chilkuri, T. Applencourt, K. Gasperich, P. F. Loos, and A. Scemama.
Adv. Quantum Chem. 83, 65 (2021).

100. Spin-conserved and spin-flip optical excitations from the Bethe-Salpeter equation formalism,
E. Monino and P. F. Loos.
J. Chem. Theory Comput. (Open Access) 17, 2852 (2021).

99. Perturbation theory in the complex plane: exceptional points and where to find them,
A. Marie, H. G. A. Burton, and P. F. Loos.
J. Phys.: Condens. Matter (Open Access) 33, 283001 (2021).

98. QUESTDB: a database of highly-accurate excitation energies for the electronic structure community,
M. Véril, A. Scemama, M. Caffarel, F. Lipparini, M. Boggio-Pasqua, D. Jacquemin, and P. F. Loos.
WIREs Comput. Mol. Sci. 11, e1517 (2021).
See the QUEST website!

97. Benchmarking TD-DFT and wave function methods for oscillator strengths and excited-state dipole moments,
R. Sarkar, M. Boggio-Pasqua, P. F. Loos, and D. Jacquemin.
J. Chem. Theory Comput. 17, 1106 (2021).

96. Potential energy surfaces without unphysical discontinuities: the Coulomb-hole plus screened exchange approach,
J. A. Berger, P.F. Loos, and P. Romaniello.
J. Chem. Theory Comput. 17, 191 (2021).

95. A mountaineering strategy to excited states: highly-accurate oscillator strengths and dipole moments of small molecules,
A. Chrayteh, A. Blondel, P. F. Loos, and D. Jacquemin.
J. Chem. Theory Comput. 17, 416 (2021).

2020



94. Weight dependence of local exchange-correlation functionals in ensemble density-functional theory: double excitations in two-electron systems,
C. Marut, B. Senjean, E. Fromager, and P. F. Loos.
Faraday Discuss. 224, 402 (2020).

93. Dynamical kernels for optical excitations,
J. Authier and P. F. Loos.
J. Chem. Phys. 153, 184105 (2020).

92. The performance of CIPSI on the ground state electronic energy of benzene,
P. F. Loos, Y. Damour, and A. Scemama.
J. Chem. Phys. 153, 176101 (2020).

91. Taming the fixed-node error in diffusion Monte Carlo via range separation,
A. Scemama, E. Giner, A. Benali, and P. F. Loos.
J. Chem. Phys. 153, 174107 (2020).

90. Dynamical correction to the Bethe-Salpeter equation beyond the plasmon-pole approximation,
P. F. Loos and X. Blase.
J. Chem. Phys. 153, 114120 (2020).

89. Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids: A case study in diamond,
A. Benali, K. Gasperich, K. D. Jordan, T. Applencourt, Y. Luo, C. Bennett, J. T. Krogel, L. Shulenburger, P. R. C. Kent, P. F. Loos, A. Scemama, and M. Caffarel.
J. Chem. Phys. 153, 184111 (2020).

88. The Bethe-Salpeter equation formalism: from physics to chemistry,
X. Blase, I. Duchemin, D. Jacquemin, and P. F. Loos.
J. Phys. Chem. Lett. (Perspective) 11, 7371 (2020).

87. A weight-dependent local correlation density-functional approximation for ensembles,
P. F. Loos, and E. Fromager.
J. Chem. Phys. 152, 214101 (2020) [Editor's pick].

86. A mountaineering strategy to excited states: highly-accurate energies and benchmarks for exotic molecules and radicals,
P. F. Loos, A. Scemama, M. Boggio-Pasqua, and D. Jacquemin.
J. Chem. Theory Comput. 16, 3720 (2020).

85. Pros and cons of the Bethe-Salpeter formalism for ground-state energies,
P. F. Loos, A. Scemama, I. Duchemin, D. Jacquemin, and X. Blase.
J. Phys. Chem. Lett. 11, 3536 (2020).

84. A basis-set error correction based on density-functional theory for strongly correlated molecular systems,
E. Giner, A. Scemama, P. F. Loos, and J. Toulouse.
J. Chem. Phys. 152, 174104 (2020) [Editor's pick].

83. The quest for highly accurate excitation energies: a computational perspective,
P. F. Loos, A. Scemama, and D. Jacquemin.
J. Phys Chem. Lett. (Perspective) 11, 2374 (2020).

82. A mountaineering strategy to excited states: highly-accurate energies and benchmarks for medium size molecules,
P. F. Loos, F. Lipparini, M. Boggio-Pasqua, A. Scemama, and D. Jacquemin.
J. Chem. Theory Comput. 16, 1711 (2020).

81. Is ADC(3) as accurate as CC3 for valence and Rydberg excitation energies?,
P. F. Loos, and D. Jacquemin.
J. Phys. Chem. Lett. 11, 974 (2020).

80. A density-based basis-set incompleteness correction for GW methods,
P. F. Loos, B. Pradines, A. Scemama, E. Giner and J. Toulouse.
J. Chem. Theory Comput. 16, 1018 (2020).

79. Capturing static and dynamic correlation with ΔNO-MP2 and ΔNO-CCSD,
J. W. Hollett and P. F. Loos.
J. Chem. Phys. 152, 014101 (2020).

2019



78. Wigner localization at extremely low densities: a numerically exact study,
M. E. Azor, L. Brooke, S. Evangelisti, T. Leininger, P. F. Loos, N. Suaud, and J. A. Berger.
SciPost Phys. Core 1, 001 (2019).

77. Chemically accurate excitation energies with small basis sets,
E. Giner, A. Scemama, J. Toulouse, and P. F. Loos.
J. Chem. Phys. 151, 144118 (2019).

76. Cross comparisons between experiment, TD-DFT, CC and ADC for transition energies,
C. Suellen, R. Garcia Freitas, P. F. Loos, and D. Jacquemin.
J. Chem. Theory Comput. 15, 4581 (2019).

75. A density-based basis-set correction for wave function theory,
P. F. Loos, B. Pradines, A. Scemama, J. Toulouse, and E. Giner.
J. Phys. Chem. Lett. 10, 2931 (2019).

74. Influence of pseudopotentials on excitation energies from selected configuration interaction and diffusion Monte Carlo,
A. Scemama, M. Caffarel, A. Benali, D. Jacquemin and P. F. Loos.
Res. Chem. 1, 100002 (2019).

73. Parity-Time symmetry in Hartree-Fock theory,
H. G. A. Burton, A. J. W. Thom, and P. F. Loos.
J. Chem. Theory Comput. 15, 4374 (2019).

72. Evaluating 0-0 energies with theoretical tools: a short-review,
P. F. Loos and D. Jacquemin.
ChemPhotoChem 3, 684 (2019).

71. Quantum package 2.0: an open-source determinant-driven suite of programs,
Y. Garniron, K. Gasperich, T. Applencourt, A. Benali, A. Ferté, J. Paquier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon, G. David, J. P. Malrieu, M. Véril, M. Caffarel, P. F. Loos, E. Giner and A. Scemama.
J. Chem. Theory Comput. 15, 3591 (2019).

70. Self-consistent electron-nucleus cusp correction for molecular orbitals,
P. F. Loos, A. Scemama and M. Caffarel.
Adv. Quantum Chem. 79, 113 (2019).

69. Chemically accurate 0-0 energies with not-so-accurate excited state geometries,
P. F. Loos and D. Jacquemin.
J. Chem. Theory Comput. 15, 2481 (2019).

68. Reference energies for double excitations,
P. F. Loos, M. Boggio-Pasqua, A. Scemama, M. Caffarel, and D. Jacquemin.
J. Chem. Theory Comput. 15, 1939 (2019).

67. Complex adiabatic connection: a hidden non-hermitian path from ground to excited states,
H. G. A. Burton, A. J. W. Thom, and P. F. Loos.
J. Chem. Phys. 150, 041103 (2019).

2018



66. Unphysical discontinuities in GW methods,
M. Véril, P. Romaniello, J. A. Berger and P. F. Loos.
J. Chem. Theory Comput. 14, 5220 (2018).

65. Theoretical 0-0 energies with chemical accuracy,
P. F. Loos, N. Galland and D. Jacquemin.
J. Phys. Chem. Lett. 9, 4646 (2018).

64. Selected configuration interaction dressed by perturbation,
Y. Garniron, A. Scemama, E. Giner, M. Caffarel, and P. F. Loos.
J. Chem. Phys. 149, 064103 (2018).

63. Excitation energies from diffusion Monte Carlo using selected configuration interaction nodes,
A. Scemama, A. Benali, D. Jacquemin, M. Caffarel and P. F. Loos.
J. Chem. Phys. 149, 034108 (2018).

62. A mountaineering strategy to excited states: highly-accurate reference energies and benchmarks,
P. F. Loos, A. Scemama, A. Blondel, Y. Garniron, M. Caffarel and D. Jacquemin.
J. Chem. Theory Comput. 14, 4360 (2018).

61. Distributed gaussian orbitals for the description of electrons in an external potential,
L. Brooke, A. Diaz-Marquez, S. Evangelisti, T. Leininger, P. F. Loos, N. Suaud and J. A. Berger.
J. Mod. Mol. 24, 216 (2018).

60. Green functions and self-consistency: insights from the spherium model,
P. F. Loos, P. Romaniello and J. A. Berger.
J. Chem. Theory Comput. 14, 3071 (2018).

59. Deterministic construction of nodal surfaces within quantum Monte Carlo: the case of FeS,
A. Scemama, Y. Garniron, M. Caffarel and P. F. Loos.
J. Chem. Theory Comput. 14, 1395 (2018).

58. Recurrence relations for four-electron integrals over Gaussian basis functions,
G. M. J. Barca and P. F. Loos.
Adv. Quantum Chem. 76, 147 (2018).

XX. Functionals, Integrals, Spheres and Cusps,
P. F. Loos
Habilitation, Universite Toulouse III, Paul Sabatier (France).

2017



57. Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory,
Y. Garniron, A. Scemama, P. F. Loos and M. Caffarel.
J. Chem. Phys. 147, 034101 (2017).

56. Three-electron and four-electron integrals involving Gaussian geminals: fundamental integrals, upper bounds and recurrence relations,
G. M. J. Barca and P. F. Loos.
J. Chem. Phys. 147, 024103 (2017).

55. Iterative stochastic subspace self-consistent field method,
P. F. Loos, J.-L. Rivail and X. Assfeld.
J. Mod. Mol. 23, 173 (2017).

54. Exchange functionals based on finite uniform electron gases,
P. F. Loos.
J. Chem. Phys. 146, 114108 (2017).

53. Excited-state Wigner crystals,
F. J. M. Rogers and P. F. Loos.
J. Chem. Phys. 146, 044114 (2017).

52. Molecular electronic structure in one-dimensional Coulomb systems,
C. J. Ball, P. F. Loos and P. M. W. Gill.
Phys. Chem. Chem. Phys. 19, 3987 (2017).

2016



51. Symmetry-broken local-density approximation for one-dimensional systems,
F. J. M. Rogers, C. J. Ball and P. F. Loos.
Phys. Rev. B 93, 235114 (2016).

50. The uniform electron gas,
P. F. Loos and P. M. W. Gill.
WIREs Comput. Mol. Sci. 6, 410 (2016).

49. Many-electron integrals over Gaussian basis functions. I. Recurrence relations for three-electron integrals
G. M. J. Barca, P. F. Loos and P. M. W. Gill.
J. Chem. Theory Comput. 12, 1735 (2016).

48. Natural occupation numbers in two-electron quantum rings,
V. Tognetti and P. F. Loos.
J. Chem. Phys. 144, 054108 (2016).

2015



47. Three-electron coalescence points in two and three dimensions,
P. F. Loos, N. J. Bloomfield and P. M. W. Gill.
J. Chem. Phys. 143, 181101 (2015).

46. Uniform electron gases: III. Low-density gases on three-dimensional spheres,
D. Agboola, A. L. Knol, P. M. W. Gill and P. F. Loos
J. Chem. Phys. 143, 084114 (2015).

45. Nodal surfaces and interdimensional degeneracies,
P. F. Loos and D. Bressanini.
J. Chem. Phys. 142, 214112 (2015).

44. Chemistry in one dimension,
P. F. Loos, C. J. Ball and P. M. W. Gill.
Phys. Chem. Chem. Phys. 17, 3196 (2015).

2014



43. Basis functions for electronic structure calculations on spheres,
P. M. W. Gill, P. F Loos and D. Agboola.
J. Chem. Phys. 141, 244102 (2014).

42. Generalized local-density approximation and one-dimensional uniform electron gases,
P. F. Loos
Phys. Rev. A 89, 052523 (2014).

41. Uniform electron gases. II. The generalized local density approximation in one dimension,
P. F. Loos, C. J. Ball and P. M. W. Gill.
J. Chem. Phys. 140, 18A524 (2014).

40. Exact wave functions for concentric two-electron systems,
P. F. Loos and P. M. W. Gill.
Phys. Lett. A 378, 329 (2014).

2013



39. Distribution of r12 · p12 in quantum systems,
Y. A. Bernard. P. F. Loos and P. M. W. Gill.
Mol. Phys. 111, 2414 (2013).

38. Uniform electron gases. I. Electrons on a ring,
P. F. Loos and P. M. W. Gill.
J. Chem. Phys. 138, 164124 (2013).

37. High-density correlation energy expansion of the one-dimensional uniform electron gas,
P. F. Loos.
J. Chem. Phys. 138, 064108 (2013).

2012



36. Understanding excitons using spherical geometry,
P. F. Loos.
Phys. Lett. A 376, 1997 (2012).

35. Harmonically trapped jellium,
P. F. Loos, and P. M. W. Gill.
Mol. Phys. 110, 2337 (2012).

34. Exact wave functions of two-electron quantum rings,
P. F. Loos, and P. M. W. Gill.
Phys. Rev. Lett. 108, 083002 (2012).

33. Leading-order behavior of the correlation energy in the uniform electron gas,
P. F. Loos and P. M. W. Gill.
Int. J. Quantum Chem. 112, 1712 (2012).

32. Uniform electron gases,
P. M. W. Gill and P. F. Loos.
Theor. Chem. Acc. 131, 1069 (2012).

2011



31.Thinking outside the box: the uniform electron gas on a hypersphere,
P. F. Loos and P. M. W. Gill.
J. Chem. Phys. 135, 214111 (2011).

30. Correlation energy of anisotropic quantum dots,
Y. Zhao, P. F. Loos and P. M. W. Gill.
Phys. Rev. A 84, 032513 (2011).

29. Correlation energy of the spin-polarized uniform electron gas at high density,
P. F. Loos and P. M. W. Gill.
Phys. Rev. B. 84, 033103 (2011).

28. Exact energy of the spin-polarized two-dimensional electron gas at high density,
P. F. Loos and P. M. W. Gill.
Phys. Rev. B 83, 233102 (2011).

2010



27. A tale of two electrons: correlation at high density,
P. F. Loos and P. M. W. Gill.
Chem. Phys. Lett. 500, 1 (2010).

26. Invariance of the correlation energy at high density and large dimension in two-electron systems,
P. F. Loos and P. M. W. Gill.
Phys. Rev. Lett. 105, 113001 (2010).

25. Excited states of spherium,
P. F. Loos and P. M. W. Gill.
Mol. Phys. 108, 2527 (2010).
See also The Strange Link Between Spherium and Helium.

24. Correlation energy of two electrons in a ball,
P. F. Loos and P. M. W. Gill.
J. Chem. Phys. 132, 234111 (2010).

23. Ground state of two electrons on concentric spheres,
P. F. Loos and P. M. W. Gill.
Phys. Rev. A 81, 052510 (2010).

22. Electronic absorption spectroscopy of Ru(II) polypyridyl DNA intercalators: a theoretical study,
D. Ambrosek, P. F. Loos, X. Assfeld, and C. Daniel.
J. Inorg. Biochem. 104, 893 (2010).

21. Hooke's law correlation in two-electron systems,
P. F. Loos.
Phys. Rev. A 81, 032510 (2010).

20. Electronic effects and ring strain influences on the electron uptake by selenium-containing bonds,
E. Dumont, P. F. Loos, A. D. Laurent, and X. Assfeld.
Int. J. Quantum Chem. 110, 513 (2010).

2009



19. Correlation energy of two electrons in the high-density limit,
P. F. Loos and P. M. W. Gill.
J. Chem. Phys. 131, 241101 (2009).

18. Two electrons on a hypersphere: a quasiexactly solvable model,
P. F. Loos and P. M. W. Gill.
Phys. Rev. Lett. 103, 123008 (2009).
See also Quantum leap keeps them out of the lab, by Cheryl Jones (The Australian),
and Understanding the dance of electrons, by Guy Micklethwait (ANU ScienceWise).

17. Ground state of two electrons on a sphere,
P. F. Loos and P. M. W. Gill.
Phys. Rev. A 79, 062517 (2009).

16. Important effects of neighbouring nucleotides on electron induced DNA single-strand breaks,
P. F. Loos, E. Dumont, A. D. Laurent, and X. Assfeld.
Chem. Phys. Lett. 475, 120 (2009).

15. Analysing the selectivity and successiveness of a two-electron capture on a multiply disulfide-linked protein,
E. Dumont, A. D. Laurent, P. F. Loos, and X. Assfeld.
J. Chem. Theory Comput. 5, 1700 (2009).

2008



14. Factors governing electron capture by small disulfide loops in two-cysteines peptides,
E. Dumont, P. F. Loos, and X. Assfeld.
J. Phys. Chem. B 112, 13661 (2008).

13. Huge disulfide-linkage's reductible potential variation induced by alpha-helix,
E. Dumont, P. F. Loos, A. D. Laurent, and X. Assfeld.
J. Chem. Theory Comput. 4, 1171 (2008).

12. Effect of ring strain on disulfide electron attachment,
E. Dumont, P. F. Loos, and X. Assfeld.
Chem. Phys. Lett. 458, 276 (2008).

11. Theoretical investigation of the geometries and UV/Vis spectra of Poly(L-glutamic acid) featuring photochromic azobenzene side chain,
P. F. Loos, J. Preat, A. Laurent, C. Michaux, D. Jacquemin, E. A. Perpete, and X. Assfeld.
J. Chem. Theor Comput. 4, 637 (2008).

2007



10. On the frontier bond location in the QM/MM description of the peptides and proteins,
P. F. Loos and X. Assfeld.
AIP Conf. Proc. 963, 308 (2007).

9. Removing the extra frontier parameters in QM/MM methods: a tentative with the Local Self-Consistent Field method,
P. F. Loos, A. Fornili, M. Sironi, and X. Assfeld. Comp. Lett. 4, 473 (2007).

8. Core-ionized and core-excited states of macromolecules,
P. F. Loos and X. Assfeld.
Int. J. Quantum. Chem. 107, 2343 (2007).

7. A TD-DFT investigation of UV spectra of pyranoidic dyes: a NCM vs PCM comparison,
J. Preat, P. F. Loos, X. Assfeld, D. Jacquemin, and E. A. Perpete.
J. Mol. Struct. (THEOCHEM) 808, 85 (2007).

6. Self-consistent strictly localized orbitals,
P. F. Loos and X. Assfeld.
J. Chem. Theory Comput. 3, 1047 (2007).

5. Intramolecular interactions and cis peptidic bonds,
P. F. Loos, X. Assfeld, and J.-L. Rivail.
Theor. Chem. Acc. 118, 165 (2007).

4. DFT and TD-DFT investigation of IR and UV spectra of solvated molecules: comparison of two SCRF continuum models,
J. Preat, P. F. Loos, X. Assfeld, D. Jacquemin, and E. A. Perpete.
Int. J. Quantum. Chem. 107, 574 (2007).

2006



3. Electronic factors favouring the cis conformation in proline peptidic bonds,
J.-L. Rivail, A. Bouchy, and P. F. Loos.
J. Argentine Chem. Soc. 94, 19 (2006).

2. Frozen core orbitals as an alternative to specific frontier bond potential in hybrid quantum mechanics/molecular mechanics methods,
A. Fornili, P. F. Loos, X. Assfeld, and M. Sironi.
Chem. Phys. Lett. 427, 236 (2006).

2004



1. Solvent effects on the asymmetric Diels-Alder reaction between cyclopentadiene and (-)-menthyl acrylate revisited with the three-layer hybrid local self-consistent field/molecular mechanics/self-consistent reaction field method,
Y. Moreau, P. F. Loos, and X. Assfeld.
Theor. Chem. Acc. 112, 228 (2004)