Thèse de Stefano Di Sabatino (LPT), novembre 2015

Reduced Density-Matrix Functional Theory : correlation and spectroscopy

Abstract This thesis addresses the description of electron correlation and spectroscopy within the context of Reduced Density-Matrix Functional Theory (RDMFT). Within RDMFT the ground-state properties of a physical system are functionals of the ground-state reduced density matrix. Various approximations to electron correlation have been proposed in literature. Many of them, however, can be traced back to the work of Müller, who has proposed an approximation to the correlation which is similar to the Hartree-Fock approximation but which can produce fractional occupation numbers. This is not always sufficient. Moreover, the expression of the observables of the system in terms of the reduced density matrix is not always known. This is the case, for example, for the spectral function, which is closely related to photoemission spectra. In this case there are error cancellations between the approximation to correlation and the approximation to the observable, which weakens the theory. In this thesis we look for more accurate approximations by exploiting the link between density matrices and Green’s functions.

In the first part of the thesis we focus on the spectral function. Using the exactly solvable Hubbard model as illustration, we analyze the existent approximations to this observable and we point out their weak points. Then, starting from its definition in terms of the one-body Green’s function, we derive an expression for the spectral function that depends on the natural occupation numbers and on an effective energy which accounts for all the charged excitations. This effective energy depends on the one-body as well as higher-order reduced density matrices. Simple approximations to this effective energy give accurate spectra in model systems in the weak as well as strong-correlation regimes. To illustrate our method on real materials we calculate the photoemission spectrum of bulk NiO : our method yields a qualitatively correct picture both in the antiferromagnetic and in the paramagnetic phases, contrary to currently used mean-field methods, which give a metal in the latter case.
The second part of the thesis is more explorative and deals with time-dependent phenomena within RDMFT. In general the time evolution of the reduced density matrices is given by the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations, in which the equation of motion of the n-body reduced density matrix is given in terms of the (n + 1)-body reduced density matrix. The first equation of the hierarchy relates the one-body to the two-body reduced density matrix. The difficult task is to find approximations to the two-body reduced density matrix. Commonly used approximations are adiabatic extension of ground-state approximations. We explore this issue by looking at new approximations derived from Many-Body Perturbation Theory (MBPT) based on Green’s functions as well as from the exact solution of the two-level Anderson impurity model in its ground state. Our first results on the two-level Anderson model subjected to various external fields show some interesting and, at the same time, puzzling features, which suggest to explore further these approximations.

rechercher sur site