Thèse de Cong-Zhang GAO (LPT), juillet 2016


Ionization dynamics of atoms and molecules subject to intense laser pulses from femtoseconds to attoseconds

Abstract :

The investigation of ionization dynamics of atoms and molecules illuminated with in- tense laser fields has attracted a great of interest in many disciplines over the decades. In this context, experiments of laser-matter interaction on the exploration of underlying mechanisms are considerably expanding with the advent of ultrashort femtosecond and attosecond laser pulses. However, the description of the laser irradiation process from a theoretical perspective is still a challenge, in particular for complex systems, such as the fullerene C60. To that end, we turn to exploit a fully fledged approach "Time-Dependent Density-Functional Theory (TDDFT)’’ to describe electron emission induced by a broad range of laser pulses from weak to strong and from femtoseconds to attoseconds.
The first part of the thesis contributes to the study of ionization dynamics of C60 irradiated by femtosecond laser pulses. Three ionization mechanisms, single-photon ionization, multi-photon ionization, and strong-field ionization, are extensively explored via photoelectron spectra(PES) and photoelectron angular distribution (PAD). Our analysis shows that for single-photon ionization, the PES basically reveal the occupied single-particle states which can be associated with the orbital depletion, and the PAD can be generalized into the anisotropy parameter which sensitively depends on the electronic states instead of the photon frequency. For multi-photon ionization, the PES are mostly generated by few uppermost orbitals, and the PAD reveal larger anisotropy with the increase of photon order. For strong-field ionization, the PES are featured by an extended plateau at high energies due to electron recollisions, and the delicate pattern on the plateau is analyzed by using a three-step model. The PAD of the high-energy electrons shows a strong alignment along the laser polarization, which is promising to generate a highly collimated electron beam. Moreover, we also discuss temperature effects from ionic motion on the PES and PAD.
The second part of the work focuses on the ionization dynamics of simple atoms and molecules subject to extreme ultraviolet (XUV) attosecond pulses in the presence of an infrared (IR) field. Using similar laser parameters as experiments, we find that for He atom it leads to subcycle ionization on the attosecond time scale depending on the delay time between IR and XUV pulses, while for Ar atom this is absent. To better understand it, we make a systematic study on the effect of key laser parameters in the IR regime. Our results reveal that IR laser intensity and XUV frequency are decisive parameters. We further study resonance effects on electron emission in Na2 molecule, and we find that ionization pattern can be related to either IR laser frequency or the eigenfrequency of the system. We then extend it to the mid-IR (MIR) regime, where more complex ionization patterns are observed. Finally, we develop a schematic model accounting for electron emission in two-color laser field, and an analytical solution of ionization probability is also obtained, which well explains the main characteristics of the ionization pattern.


rechercher sur site