Thèse de Medha SONI (LPT Toulouse & ETH-Zurich), septembre 2016


Investigation of exotic correlated states of matter in low dimension

Abstract : Quantum statistics is an important aspect of quantum mechanics and it lays down the rules for identifying different classes of particles. In this thesis, we study two projects, one that surveys models of Fibonacci anyons and another that delves into fermions in optical lattices. We analyse the physics of mobile non-Abelian anyons beyond one-dimension by constructing the simplest possible model of 2D itinerant interacting anyons in close analogy to fermionic systems and inspired by the previous anyonic studies. In particular, we ask the question if spin-charge separation survives in the ladder model for non-Abelian anyons. Furthermore, in the study of this model, we have found a novel physical effective model that possibly hosts a topological gapped state. For fermions in one dimensional optical lattices, we survey the effects of non-adiabatic lattice loading on four different target states, and propose protocols to minimise heating of quantum gases. The evaporative cooling of a trapped atomic cloud, i.e. without the optical lattice potential, has been proven to be a very effective process. Current protocols are able to achieve temperatures as low as $T/T_F \approx 0.08$, which are lost in the presence of the optical lattice. We aim to understand if defects caused by poor distribution of particles during lattice loading are important for the fermionic case, forbidding the atoms to cool down to the desired level. We device improved ramp up schemes where we dynamically change one or more parameters of the system in order to reduce density defects.

rechercher sur site